3.4.84 \(\int \frac {(a+b x)^{2/3}}{x^3} \, dx\) [384]

3.4.84.1 Optimal result
3.4.84.2 Mathematica [A] (verified)
3.4.84.3 Rubi [A] (verified)
3.4.84.4 Maple [A] (verified)
3.4.84.5 Fricas [A] (verification not implemented)
3.4.84.6 Sympy [C] (verification not implemented)
3.4.84.7 Maxima [A] (verification not implemented)
3.4.84.8 Giac [A] (verification not implemented)
3.4.84.9 Mupad [B] (verification not implemented)

3.4.84.1 Optimal result

Integrand size = 13, antiderivative size = 127 \[ \int \frac {(a+b x)^{2/3}}{x^3} \, dx=-\frac {(a+b x)^{2/3}}{2 x^2}-\frac {b (a+b x)^{2/3}}{3 a x}-\frac {b^2 \arctan \left (\frac {\sqrt [3]{a}+2 \sqrt [3]{a+b x}}{\sqrt {3} \sqrt [3]{a}}\right )}{3 \sqrt {3} a^{4/3}}+\frac {b^2 \log (x)}{18 a^{4/3}}-\frac {b^2 \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x}\right )}{6 a^{4/3}} \]

output
-1/2*(b*x+a)^(2/3)/x^2-1/3*b*(b*x+a)^(2/3)/a/x+1/18*b^2*ln(x)/a^(4/3)-1/6* 
b^2*ln(a^(1/3)-(b*x+a)^(1/3))/a^(4/3)-1/9*b^2*arctan(1/3*(a^(1/3)+2*(b*x+a 
)^(1/3))/a^(1/3)*3^(1/2))/a^(4/3)*3^(1/2)
 
3.4.84.2 Mathematica [A] (verified)

Time = 0.20 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.16 \[ \int \frac {(a+b x)^{2/3}}{x^3} \, dx=-\frac {(a+b x)^{2/3} (a+2 (a+b x))}{6 a x^2}-\frac {b^2 \arctan \left (\frac {1}{\sqrt {3}}+\frac {2 \sqrt [3]{a+b x}}{\sqrt {3} \sqrt [3]{a}}\right )}{3 \sqrt {3} a^{4/3}}-\frac {b^2 \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x}\right )}{9 a^{4/3}}+\frac {b^2 \log \left (a^{2/3}+\sqrt [3]{a} \sqrt [3]{a+b x}+(a+b x)^{2/3}\right )}{18 a^{4/3}} \]

input
Integrate[(a + b*x)^(2/3)/x^3,x]
 
output
-1/6*((a + b*x)^(2/3)*(a + 2*(a + b*x)))/(a*x^2) - (b^2*ArcTan[1/Sqrt[3] + 
 (2*(a + b*x)^(1/3))/(Sqrt[3]*a^(1/3))])/(3*Sqrt[3]*a^(4/3)) - (b^2*Log[a^ 
(1/3) - (a + b*x)^(1/3)])/(9*a^(4/3)) + (b^2*Log[a^(2/3) + a^(1/3)*(a + b* 
x)^(1/3) + (a + b*x)^(2/3)])/(18*a^(4/3))
 
3.4.84.3 Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.97, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {51, 52, 67, 16, 1082, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b x)^{2/3}}{x^3} \, dx\)

\(\Big \downarrow \) 51

\(\displaystyle \frac {1}{3} b \int \frac {1}{x^2 \sqrt [3]{a+b x}}dx-\frac {(a+b x)^{2/3}}{2 x^2}\)

\(\Big \downarrow \) 52

\(\displaystyle \frac {1}{3} b \left (-\frac {b \int \frac {1}{x \sqrt [3]{a+b x}}dx}{3 a}-\frac {(a+b x)^{2/3}}{a x}\right )-\frac {(a+b x)^{2/3}}{2 x^2}\)

\(\Big \downarrow \) 67

\(\displaystyle \frac {1}{3} b \left (-\frac {b \left (\frac {3}{2} \int \frac {1}{a^{2/3}+\sqrt [3]{a+b x} \sqrt [3]{a}+(a+b x)^{2/3}}d\sqrt [3]{a+b x}-\frac {3 \int \frac {1}{\sqrt [3]{a}-\sqrt [3]{a+b x}}d\sqrt [3]{a+b x}}{2 \sqrt [3]{a}}-\frac {\log (x)}{2 \sqrt [3]{a}}\right )}{3 a}-\frac {(a+b x)^{2/3}}{a x}\right )-\frac {(a+b x)^{2/3}}{2 x^2}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {1}{3} b \left (-\frac {b \left (\frac {3}{2} \int \frac {1}{a^{2/3}+\sqrt [3]{a+b x} \sqrt [3]{a}+(a+b x)^{2/3}}d\sqrt [3]{a+b x}+\frac {3 \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x}\right )}{2 \sqrt [3]{a}}-\frac {\log (x)}{2 \sqrt [3]{a}}\right )}{3 a}-\frac {(a+b x)^{2/3}}{a x}\right )-\frac {(a+b x)^{2/3}}{2 x^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {1}{3} b \left (-\frac {b \left (-\frac {3 \int \frac {1}{-(a+b x)^{2/3}-3}d\left (\frac {2 \sqrt [3]{a+b x}}{\sqrt [3]{a}}+1\right )}{\sqrt [3]{a}}+\frac {3 \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x}\right )}{2 \sqrt [3]{a}}-\frac {\log (x)}{2 \sqrt [3]{a}}\right )}{3 a}-\frac {(a+b x)^{2/3}}{a x}\right )-\frac {(a+b x)^{2/3}}{2 x^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{3} b \left (-\frac {b \left (\frac {\sqrt {3} \arctan \left (\frac {\frac {2 \sqrt [3]{a+b x}}{\sqrt [3]{a}}+1}{\sqrt {3}}\right )}{\sqrt [3]{a}}+\frac {3 \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x}\right )}{2 \sqrt [3]{a}}-\frac {\log (x)}{2 \sqrt [3]{a}}\right )}{3 a}-\frac {(a+b x)^{2/3}}{a x}\right )-\frac {(a+b x)^{2/3}}{2 x^2}\)

input
Int[(a + b*x)^(2/3)/x^3,x]
 
output
-1/2*(a + b*x)^(2/3)/x^2 + (b*(-((a + b*x)^(2/3)/(a*x)) - (b*((Sqrt[3]*Arc 
Tan[(1 + (2*(a + b*x)^(1/3))/a^(1/3))/Sqrt[3]])/a^(1/3) - Log[x]/(2*a^(1/3 
)) + (3*Log[a^(1/3) - (a + b*x)^(1/3)])/(2*a^(1/3))))/(3*a)))/3
 

3.4.84.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 51
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + 1))), x] - Simp[d*(n/(b*(m + 1))) 
Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && ILtQ[m, -1] && FractionQ[n] && GtQ[n, 0]
 

rule 52
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && ILtQ[m, -1] && FractionQ[n] && LtQ[n, 0]
 

rule 67
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[ 
{q = Rt[(b*c - a*d)/b, 3]}, Simp[-Log[RemoveContent[a + b*x, x]]/(2*b*q), x 
] + (Simp[3/(2*b)   Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*x)^(1/3)], 
 x] - Simp[3/(2*b*q)   Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], x])] / 
; FreeQ[{a, b, c, d}, x] && PosQ[(b*c - a*d)/b]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 
3.4.84.4 Maple [A] (verified)

Time = 0.10 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.84

method result size
risch \(-\frac {\left (b x +a \right )^{\frac {2}{3}} \left (2 b x +3 a \right )}{6 x^{2} a}-\frac {b^{2} \left (\frac {\ln \left (\left (b x +a \right )^{\frac {1}{3}}-a^{\frac {1}{3}}\right )}{a^{\frac {1}{3}}}-\frac {\ln \left (\left (b x +a \right )^{\frac {2}{3}}+a^{\frac {1}{3}} \left (b x +a \right )^{\frac {1}{3}}+a^{\frac {2}{3}}\right )}{2 a^{\frac {1}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 \left (b x +a \right )^{\frac {1}{3}}}{a^{\frac {1}{3}}}+1\right )}{3}\right )}{a^{\frac {1}{3}}}\right )}{9 a}\) \(107\)
derivativedivides \(3 b^{2} \left (-\frac {\frac {\left (b x +a \right )^{\frac {5}{3}}}{9 a}+\frac {\left (b x +a \right )^{\frac {2}{3}}}{18}}{b^{2} x^{2}}-\frac {\frac {\ln \left (\left (b x +a \right )^{\frac {1}{3}}-a^{\frac {1}{3}}\right )}{3 a^{\frac {1}{3}}}-\frac {\ln \left (\left (b x +a \right )^{\frac {2}{3}}+a^{\frac {1}{3}} \left (b x +a \right )^{\frac {1}{3}}+a^{\frac {2}{3}}\right )}{6 a^{\frac {1}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 \left (b x +a \right )^{\frac {1}{3}}}{a^{\frac {1}{3}}}+1\right )}{3}\right )}{3 a^{\frac {1}{3}}}}{9 a}\right )\) \(118\)
default \(3 b^{2} \left (-\frac {\frac {\left (b x +a \right )^{\frac {5}{3}}}{9 a}+\frac {\left (b x +a \right )^{\frac {2}{3}}}{18}}{b^{2} x^{2}}-\frac {\frac {\ln \left (\left (b x +a \right )^{\frac {1}{3}}-a^{\frac {1}{3}}\right )}{3 a^{\frac {1}{3}}}-\frac {\ln \left (\left (b x +a \right )^{\frac {2}{3}}+a^{\frac {1}{3}} \left (b x +a \right )^{\frac {1}{3}}+a^{\frac {2}{3}}\right )}{6 a^{\frac {1}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 \left (b x +a \right )^{\frac {1}{3}}}{a^{\frac {1}{3}}}+1\right )}{3}\right )}{3 a^{\frac {1}{3}}}}{9 a}\right )\) \(118\)
pseudoelliptic \(\frac {-9 \left (b x +a \right )^{\frac {2}{3}} a^{\frac {4}{3}}-2 b^{2} \arctan \left (\frac {\left (a^{\frac {1}{3}}+2 \left (b x +a \right )^{\frac {1}{3}}\right ) \sqrt {3}}{3 a^{\frac {1}{3}}}\right ) \sqrt {3}\, x^{2}-6 b x \left (b x +a \right )^{\frac {2}{3}} a^{\frac {1}{3}}-2 b^{2} \ln \left (\left (b x +a \right )^{\frac {1}{3}}-a^{\frac {1}{3}}\right ) x^{2}+b^{2} \ln \left (\left (b x +a \right )^{\frac {2}{3}}+a^{\frac {1}{3}} \left (b x +a \right )^{\frac {1}{3}}+a^{\frac {2}{3}}\right ) x^{2}}{18 a^{\frac {4}{3}} x^{2}}\) \(121\)

input
int((b*x+a)^(2/3)/x^3,x,method=_RETURNVERBOSE)
 
output
-1/6*(b*x+a)^(2/3)*(2*b*x+3*a)/x^2/a-1/9*b^2/a*(1/a^(1/3)*ln((b*x+a)^(1/3) 
-a^(1/3))-1/2/a^(1/3)*ln((b*x+a)^(2/3)+a^(1/3)*(b*x+a)^(1/3)+a^(2/3))+3^(1 
/2)/a^(1/3)*arctan(1/3*3^(1/2)*(2/a^(1/3)*(b*x+a)^(1/3)+1)))
 
3.4.84.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 350, normalized size of antiderivative = 2.76 \[ \int \frac {(a+b x)^{2/3}}{x^3} \, dx=\left [\frac {3 \, \sqrt {\frac {1}{3}} a b^{2} x^{2} \sqrt {\frac {\left (-a\right )^{\frac {1}{3}}}{a}} \log \left (\frac {2 \, b x - 3 \, \sqrt {\frac {1}{3}} {\left (2 \, {\left (b x + a\right )}^{\frac {2}{3}} \left (-a\right )^{\frac {2}{3}} - {\left (b x + a\right )}^{\frac {1}{3}} a + \left (-a\right )^{\frac {1}{3}} a\right )} \sqrt {\frac {\left (-a\right )^{\frac {1}{3}}}{a}} - 3 \, {\left (b x + a\right )}^{\frac {1}{3}} \left (-a\right )^{\frac {2}{3}} + 3 \, a}{x}\right ) + \left (-a\right )^{\frac {2}{3}} b^{2} x^{2} \log \left ({\left (b x + a\right )}^{\frac {2}{3}} - {\left (b x + a\right )}^{\frac {1}{3}} \left (-a\right )^{\frac {1}{3}} + \left (-a\right )^{\frac {2}{3}}\right ) - 2 \, \left (-a\right )^{\frac {2}{3}} b^{2} x^{2} \log \left ({\left (b x + a\right )}^{\frac {1}{3}} + \left (-a\right )^{\frac {1}{3}}\right ) - 3 \, {\left (2 \, a b x + 3 \, a^{2}\right )} {\left (b x + a\right )}^{\frac {2}{3}}}{18 \, a^{2} x^{2}}, -\frac {6 \, \sqrt {\frac {1}{3}} a b^{2} x^{2} \sqrt {-\frac {\left (-a\right )^{\frac {1}{3}}}{a}} \arctan \left (\sqrt {\frac {1}{3}} {\left (2 \, {\left (b x + a\right )}^{\frac {1}{3}} - \left (-a\right )^{\frac {1}{3}}\right )} \sqrt {-\frac {\left (-a\right )^{\frac {1}{3}}}{a}}\right ) - \left (-a\right )^{\frac {2}{3}} b^{2} x^{2} \log \left ({\left (b x + a\right )}^{\frac {2}{3}} - {\left (b x + a\right )}^{\frac {1}{3}} \left (-a\right )^{\frac {1}{3}} + \left (-a\right )^{\frac {2}{3}}\right ) + 2 \, \left (-a\right )^{\frac {2}{3}} b^{2} x^{2} \log \left ({\left (b x + a\right )}^{\frac {1}{3}} + \left (-a\right )^{\frac {1}{3}}\right ) + 3 \, {\left (2 \, a b x + 3 \, a^{2}\right )} {\left (b x + a\right )}^{\frac {2}{3}}}{18 \, a^{2} x^{2}}\right ] \]

input
integrate((b*x+a)^(2/3)/x^3,x, algorithm="fricas")
 
output
[1/18*(3*sqrt(1/3)*a*b^2*x^2*sqrt((-a)^(1/3)/a)*log((2*b*x - 3*sqrt(1/3)*( 
2*(b*x + a)^(2/3)*(-a)^(2/3) - (b*x + a)^(1/3)*a + (-a)^(1/3)*a)*sqrt((-a) 
^(1/3)/a) - 3*(b*x + a)^(1/3)*(-a)^(2/3) + 3*a)/x) + (-a)^(2/3)*b^2*x^2*lo 
g((b*x + a)^(2/3) - (b*x + a)^(1/3)*(-a)^(1/3) + (-a)^(2/3)) - 2*(-a)^(2/3 
)*b^2*x^2*log((b*x + a)^(1/3) + (-a)^(1/3)) - 3*(2*a*b*x + 3*a^2)*(b*x + a 
)^(2/3))/(a^2*x^2), -1/18*(6*sqrt(1/3)*a*b^2*x^2*sqrt(-(-a)^(1/3)/a)*arcta 
n(sqrt(1/3)*(2*(b*x + a)^(1/3) - (-a)^(1/3))*sqrt(-(-a)^(1/3)/a)) - (-a)^( 
2/3)*b^2*x^2*log((b*x + a)^(2/3) - (b*x + a)^(1/3)*(-a)^(1/3) + (-a)^(2/3) 
) + 2*(-a)^(2/3)*b^2*x^2*log((b*x + a)^(1/3) + (-a)^(1/3)) + 3*(2*a*b*x + 
3*a^2)*(b*x + a)^(2/3))/(a^2*x^2)]
 
3.4.84.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 2.41 (sec) , antiderivative size = 2266, normalized size of antiderivative = 17.84 \[ \int \frac {(a+b x)^{2/3}}{x^3} \, dx=\text {Too large to display} \]

input
integrate((b*x+a)**(2/3)/x**3,x)
 
output
-10*a**(17/3)*b**2*exp(2*I*pi/3)*log(1 - b**(1/3)*(a/b + x)**(1/3)/a**(1/3 
))*gamma(5/3)/(54*a**7*exp(2*I*pi/3)*gamma(8/3) - 162*a**6*b*(a/b + x)*exp 
(2*I*pi/3)*gamma(8/3) + 162*a**5*b**2*(a/b + x)**2*exp(2*I*pi/3)*gamma(8/3 
) - 54*a**4*b**3*(a/b + x)**3*exp(2*I*pi/3)*gamma(8/3)) - 10*a**(17/3)*b** 
2*exp(-2*I*pi/3)*log(1 - b**(1/3)*(a/b + x)**(1/3)*exp_polar(2*I*pi/3)/a** 
(1/3))*gamma(5/3)/(54*a**7*exp(2*I*pi/3)*gamma(8/3) - 162*a**6*b*(a/b + x) 
*exp(2*I*pi/3)*gamma(8/3) + 162*a**5*b**2*(a/b + x)**2*exp(2*I*pi/3)*gamma 
(8/3) - 54*a**4*b**3*(a/b + x)**3*exp(2*I*pi/3)*gamma(8/3)) - 10*a**(17/3) 
*b**2*log(1 - b**(1/3)*(a/b + x)**(1/3)*exp_polar(4*I*pi/3)/a**(1/3))*gamm 
a(5/3)/(54*a**7*exp(2*I*pi/3)*gamma(8/3) - 162*a**6*b*(a/b + x)*exp(2*I*pi 
/3)*gamma(8/3) + 162*a**5*b**2*(a/b + x)**2*exp(2*I*pi/3)*gamma(8/3) - 54* 
a**4*b**3*(a/b + x)**3*exp(2*I*pi/3)*gamma(8/3)) + 30*a**(14/3)*b**3*(a/b 
+ x)*exp(2*I*pi/3)*log(1 - b**(1/3)*(a/b + x)**(1/3)/a**(1/3))*gamma(5/3)/ 
(54*a**7*exp(2*I*pi/3)*gamma(8/3) - 162*a**6*b*(a/b + x)*exp(2*I*pi/3)*gam 
ma(8/3) + 162*a**5*b**2*(a/b + x)**2*exp(2*I*pi/3)*gamma(8/3) - 54*a**4*b* 
*3*(a/b + x)**3*exp(2*I*pi/3)*gamma(8/3)) + 30*a**(14/3)*b**3*(a/b + x)*ex 
p(-2*I*pi/3)*log(1 - b**(1/3)*(a/b + x)**(1/3)*exp_polar(2*I*pi/3)/a**(1/3 
))*gamma(5/3)/(54*a**7*exp(2*I*pi/3)*gamma(8/3) - 162*a**6*b*(a/b + x)*exp 
(2*I*pi/3)*gamma(8/3) + 162*a**5*b**2*(a/b + x)**2*exp(2*I*pi/3)*gamma(8/3 
) - 54*a**4*b**3*(a/b + x)**3*exp(2*I*pi/3)*gamma(8/3)) + 30*a**(14/3)*...
 
3.4.84.7 Maxima [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.09 \[ \int \frac {(a+b x)^{2/3}}{x^3} \, dx=-\frac {\sqrt {3} b^{2} \arctan \left (\frac {\sqrt {3} {\left (2 \, {\left (b x + a\right )}^{\frac {1}{3}} + a^{\frac {1}{3}}\right )}}{3 \, a^{\frac {1}{3}}}\right )}{9 \, a^{\frac {4}{3}}} + \frac {b^{2} \log \left ({\left (b x + a\right )}^{\frac {2}{3}} + {\left (b x + a\right )}^{\frac {1}{3}} a^{\frac {1}{3}} + a^{\frac {2}{3}}\right )}{18 \, a^{\frac {4}{3}}} - \frac {b^{2} \log \left ({\left (b x + a\right )}^{\frac {1}{3}} - a^{\frac {1}{3}}\right )}{9 \, a^{\frac {4}{3}}} - \frac {2 \, {\left (b x + a\right )}^{\frac {5}{3}} b^{2} + {\left (b x + a\right )}^{\frac {2}{3}} a b^{2}}{6 \, {\left ({\left (b x + a\right )}^{2} a - 2 \, {\left (b x + a\right )} a^{2} + a^{3}\right )}} \]

input
integrate((b*x+a)^(2/3)/x^3,x, algorithm="maxima")
 
output
-1/9*sqrt(3)*b^2*arctan(1/3*sqrt(3)*(2*(b*x + a)^(1/3) + a^(1/3))/a^(1/3)) 
/a^(4/3) + 1/18*b^2*log((b*x + a)^(2/3) + (b*x + a)^(1/3)*a^(1/3) + a^(2/3 
))/a^(4/3) - 1/9*b^2*log((b*x + a)^(1/3) - a^(1/3))/a^(4/3) - 1/6*(2*(b*x 
+ a)^(5/3)*b^2 + (b*x + a)^(2/3)*a*b^2)/((b*x + a)^2*a - 2*(b*x + a)*a^2 + 
 a^3)
 
3.4.84.8 Giac [A] (verification not implemented)

Time = 0.53 (sec) , antiderivative size = 129, normalized size of antiderivative = 1.02 \[ \int \frac {(a+b x)^{2/3}}{x^3} \, dx=-\frac {\frac {2 \, \sqrt {3} b^{3} \arctan \left (\frac {\sqrt {3} {\left (2 \, {\left (b x + a\right )}^{\frac {1}{3}} + a^{\frac {1}{3}}\right )}}{3 \, a^{\frac {1}{3}}}\right )}{a^{\frac {4}{3}}} - \frac {b^{3} \log \left ({\left (b x + a\right )}^{\frac {2}{3}} + {\left (b x + a\right )}^{\frac {1}{3}} a^{\frac {1}{3}} + a^{\frac {2}{3}}\right )}{a^{\frac {4}{3}}} + \frac {2 \, b^{3} \log \left ({\left | {\left (b x + a\right )}^{\frac {1}{3}} - a^{\frac {1}{3}} \right |}\right )}{a^{\frac {4}{3}}} + \frac {3 \, {\left (2 \, {\left (b x + a\right )}^{\frac {5}{3}} b^{3} + {\left (b x + a\right )}^{\frac {2}{3}} a b^{3}\right )}}{a b^{2} x^{2}}}{18 \, b} \]

input
integrate((b*x+a)^(2/3)/x^3,x, algorithm="giac")
 
output
-1/18*(2*sqrt(3)*b^3*arctan(1/3*sqrt(3)*(2*(b*x + a)^(1/3) + a^(1/3))/a^(1 
/3))/a^(4/3) - b^3*log((b*x + a)^(2/3) + (b*x + a)^(1/3)*a^(1/3) + a^(2/3) 
)/a^(4/3) + 2*b^3*log(abs((b*x + a)^(1/3) - a^(1/3)))/a^(4/3) + 3*(2*(b*x 
+ a)^(5/3)*b^3 + (b*x + a)^(2/3)*a*b^3)/(a*b^2*x^2))/b
 
3.4.84.9 Mupad [B] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.53 \[ \int \frac {(a+b x)^{2/3}}{x^3} \, dx=\frac {{\left (-1\right )}^{1/3}\,b^2\,\ln \left ({\left (a+b\,x\right )}^{1/3}-{\left (-1\right )}^{2/3}\,a^{1/3}\right )}{9\,a^{4/3}}-\frac {\frac {b^2\,{\left (a+b\,x\right )}^{2/3}}{6}+\frac {b^2\,{\left (a+b\,x\right )}^{5/3}}{3\,a}}{{\left (a+b\,x\right )}^2-2\,a\,\left (a+b\,x\right )+a^2}+\frac {{\left (-1\right )}^{1/3}\,b^2\,\ln \left (\frac {b^4\,{\left (a+b\,x\right )}^{1/3}}{9\,a^2}-\frac {{\left (-1\right )}^{2/3}\,b^4\,{\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}^2}{9\,a^{5/3}}\right )\,\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{9\,a^{4/3}}-\frac {{\left (-1\right )}^{1/3}\,b^2\,\ln \left (\frac {b^4\,{\left (a+b\,x\right )}^{1/3}}{9\,a^2}-\frac {{\left (-1\right )}^{2/3}\,b^4\,{\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}^2}{9\,a^{5/3}}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}{9\,a^{4/3}} \]

input
int((a + b*x)^(2/3)/x^3,x)
 
output
((-1)^(1/3)*b^2*log((a + b*x)^(1/3) - (-1)^(2/3)*a^(1/3)))/(9*a^(4/3)) - ( 
(b^2*(a + b*x)^(2/3))/6 + (b^2*(a + b*x)^(5/3))/(3*a))/((a + b*x)^2 - 2*a* 
(a + b*x) + a^2) + ((-1)^(1/3)*b^2*log((b^4*(a + b*x)^(1/3))/(9*a^2) - ((- 
1)^(2/3)*b^4*((3^(1/2)*1i)/2 - 1/2)^2)/(9*a^(5/3)))*((3^(1/2)*1i)/2 - 1/2) 
)/(9*a^(4/3)) - ((-1)^(1/3)*b^2*log((b^4*(a + b*x)^(1/3))/(9*a^2) - ((-1)^ 
(2/3)*b^4*((3^(1/2)*1i)/2 + 1/2)^2)/(9*a^(5/3)))*((3^(1/2)*1i)/2 + 1/2))/( 
9*a^(4/3))